
Introduction
Due to the aging population, spinal diseases get more and more common

nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and

13% for white men in the United States. Thus the numbers of surgical spinal

procedures are also increasing with the aging population and precise diagnosis

plays a vital role in reducing complication and recurrence of symptoms. Spinal

imaging of vertebral column is a tedious process subjected to interpretation errors.

In this contribution, we aim to reduce time and error for vertebral interpretation by

applying and studying the GrowCut-algorithm for boundary segmentation between

vertebral body compacta and surrounding structures. GrowCut is a competitive

region growing algorithm using cellular automata. For our study, vertebral T2-

weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined

by neurosurgeons. Then, the vertebral bodies were segmented in the medical

images by a GrowCut-trained physician using the semi-automated GrowCut-

algorithm. Afterwards, results of both segmentation processes were compared

using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD). In

addition, the times have been measured during the manual and the GrowCut

segmentations, showing that a GrowCut-segmentation – with an average time of

less than six minutes (5.77±0.73) – is significantly shorter than a pure manual

outlining.

Methods

Results

Conclusions
In this study, we used the interactive GrowCut algorithm, based on cellular

automata, for 3D segmentation of vertebral bodies (note: preliminary results have

been presented at the spine congress of the DGNC in Frankfurt, Germany). In

summary, we found that a semi-automated segmentation using the GrowCut

algorithm reduces segmentation time while at the same time achieves a similar

accuracy as pure manual slice-by-slice segmentations. For evaluation of the

GrowCut segmentation results, we used vertebrae images from MRI datasets,

which have been manually outlined by physicians, and which took in average

over ten minutes (10.75±6.65) for a single vertebra in our datasets. There are

several areas of future work: The GrowCut algorithm initialization has initially

been set up by the user in three slices for this study. However, instead of

initializing the foreground and background on three single 2D slices, one single

3D initialization could be used by means of generating a sphere around the

position of a user-defined seed point near the center of the vertebral body.

Furthermore, we want to test GrowCut on longitudinal/tubular structures, like

vessels9-14 or fiber tracts15,16.
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Similar to1-3 for glioblastoma multiforme (GBM)4,5, Pituitary Adenoma6 and lung

cancer the software used during this study for the semi-automatic segmentation

work was Slicer (www.slicer.org)7,8. Thus, the following step-by-step workflow to

perform vertebral body segmentation has been used:

-loading the patient dataset into the Slicer Platform;

-initializing the foreground and background for GrowCut, by marking an area

inside and around the identified vertebral bodies;

-running the automatic competing region-growing in Slicer; and

-using morphological operations like dilation, erosion, and island removal for post-

editing after visual inspection of the results.

Briefly, GrowCut is a competitive region-growing algorithm using cellular automata

that uses an iterative labeling procedure. Figure 1 shows a L4 vertebra after the

dataset is loaded with a typical user initialization for GrowCut on the axial, sagittal

and coronal cross-sections on the right side.

Figure 1 – Typical user initialization of GrowCut.

Figure 2 – Direct comparison of a manual (yellow) and the automatic segmentation

(green) on a sagittal slice: The left image shows the original MRI slice, the adjacent image

presents the manual segmentation, the third image from the left presents the GrowCut

segmentation result and the right image presents both segmentations (manual and

GrowCut) superimposed on the MRI slice.

As comparison metrics for our study, the GrowCut-based vertebral body

segmentation results have been evaluated against manually slice-by-slice

segmentations using the Dice Similarity Coefficient (DSC) and the Hausdorff

Distance (HD). The DSC is a measure for spatial overlap of different segmentation

results, which is commonly used in medical imaging studies to quantify the degree

of overlap between two segmented objects A and R:

Thereby, the DSC can have a value ranging from zero to one, and is defined as

two times the volume of the intersection between the two segmentations A and R,

divided by the sum of the volumes of the two segmentations. A value of zero

indicates no overlap and a value of one indicates a perfect agreement, and as a

consequence higher values indicate a better agreement. The Hausdorff Distance

is used to calculate how far away (in voxel) the two segmentations A and R are.

As gold standard to calculate the DSCs and the Hausdorff Distances we had

manual segmentations of vertebrae boundaries extracted by several clinical

experts (neurological surgeons) with many years of experience in spine surgery.

Compared with the GrowCut-based segmentation results from a trained physician

we discovered an average Dice Similarity Coefficient of 82.99±5.03% and

Hausdorff Distance of 18.91±7.2 voxel. For visual inspection, a direct comparison

of a manual (yellow) and a GrowCut-based segmentation (green) on a sagittal

slice is presented in Figure 2: the left image shows the original MRI slice, the next

image from the left presents the manual segmentation, the third image from the

left presents the GrowCut-based segmentation result, and the right image

presents both segmentations (manual and GrowCut) superimposed on the original

MRI slice.


